MECH 310 THERMODYNAMICS I ASSIGNMENT 1

Problem 1

$$
\begin{equation*}
P v^{1.4}=2.3 \times 10^{5} \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
d P=\rho g d h \tag{2}
\end{equation*}
$$

But

$$
\begin{equation*}
\rho=\frac{1}{v} \tag{3}
\end{equation*}
$$

Substituting (3) into (1)

$$
\rho=\frac{P^{1 / 1.4}}{\left(2.3 \times 10^{5}\right)^{1 / 1.4}}=3.698 \times 10^{-3} P^{0.7143}
$$

Therefore,

$$
\begin{gathered}
d P=9.81 \times 3.698 \times 10^{-3} P^{0.7143} d h \\
h=688.9 \int_{0}^{P_{o}} P^{-0.7143} d p \\
h=64,900 \mathrm{~m}=64.9 \mathrm{~km}
\end{gathered}
$$

Problem 2

(b) $\Delta P=660 \mathrm{mmHg}=\frac{660}{760} \times 101.3 \mathrm{kPa}=87.97 \mathrm{kPa}$

$$
P_{\mathrm{abs}}=P_{\mathrm{o}}-\Delta P=101.3-87.97=13.32 \mathrm{kPa}
$$

Problem 3

$\rho=S G\left(\rho_{H 2 O}\right)=0.85 \times 1,000=850 \mathrm{~kg} / \mathrm{m}^{3}$
But

$$
P=P_{0}+\rho g h=96+850 \times 9.81 \times 0.55=100.6 k P a
$$

Problem 4

$21.35^{\circ} \mathrm{C}$

Problem 5

Starting with the atmospheric pressure on the top surface of the container and moving along the tube by adding (as we go down) or subtracting (as we go up) the ghp terms until we reach point A, and setting the result equal to P_{A} give

$$
P_{\mathrm{atm}}+\rho_{\text {oil }} g h_{\text {oil }}+\rho_{\mathrm{w}} g h_{w}-\rho_{\mathrm{gly}} g h_{\mathrm{gly}}=P_{\mathrm{A}}
$$

Rearranging and using the definition of specific gravity,

$$
P_{\mathrm{A}}-P_{\mathrm{atm}}=\mathrm{SG}_{\text {oil }} \rho_{w} g h_{\text {oil }}+\mathrm{SG}_{w} \rho_{w} g h_{w}-\mathrm{SG}_{\text {ely }} \rho_{w} g h_{\mathrm{ely}}
$$

or

$$
P_{\mathrm{A}, \mathrm{gage}}=g \rho_{w}\left(\mathrm{SG}_{\text {oil }} h_{\text {oil }}+\mathrm{SG}_{w} h_{w}-\mathrm{SG}_{\text {ely }} h_{\text {ely }}\right)
$$

Substituting,

$$
\begin{aligned}
P_{\text {A,gage }} & =\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)[0.90(0.70 \mathrm{~m})+1(0.3 \mathrm{~m})-1.26(0.70 \mathrm{~m})]\left(\frac{1 \mathrm{kN}}{1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}\right) \\
& =0.471 \mathrm{kN} / \mathrm{m}^{2}=0.471 \mathrm{kPa}
\end{aligned}
$$

The equivalent mercury column height is

$$
h_{\mathrm{Hg}}=\frac{P_{\mathrm{A}, \mathrm{gage}}}{\rho_{\mathrm{Hg}} g}=\frac{0.471 \mathrm{kN} / \mathrm{m}^{2}}{\left(13,600 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\left(\frac{1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{1 \mathrm{kN}}\right)=0.00353 \mathrm{~m}=0.353 \mathrm{~cm}
$$

